. The Mean Value Theorem (M. V. T.):

Suppose $y=f(x)$ is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), Then there is at least one point c in (a, b) at which

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Examples: Does the $M . V . T$. be applicable on the following functions. If so find the value or values of c.

1. $f(x)=x-2 \sin x ; \quad 0 \leq x \leq 2 \pi$

Sol.: 1. $f(x)=x-2 \sin x$ is continuous on $[0,2 \pi]$.
2. $f^{\prime}(x)=1-2 \cos x$ is differentiable on $(0,2 \pi)$.
\therefore The M. V. T. is applicable on $[0,2 \pi]$.
To find c :

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

where $f(b)=f(2 \pi)=2 \pi-2 \sin 2 \pi=2 \pi-0=2 \pi$

$$
f(a)=f(0)=0-2 \sin 0=0-0=0
$$

and $\quad f^{\prime}(c)=1-2 \cos c$, thus:

$$
1-2 \cos c=\frac{2 \pi-0}{2 \pi-0} \Rightarrow 1-2 \cos c=1 \Rightarrow 2 \cos c=0 \Rightarrow \cos c=0
$$

$\therefore c=\mp \frac{n \pi}{2} ; \quad n=1,3,5 .$.
$\therefore c_{1}=\frac{\pi}{2} \quad$ and $\quad c_{2}=\frac{3 \pi}{2} \quad$ on the interval $[0,2 \pi]$.
2. $f(x)=x^{2 / 3} ; \quad[-8,8]$

Sol.: 1. $f(x)=x^{2 / 3}=\sqrt[3]{x^{2}}$ is continuous on $[-8,8]$.
2. $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 \sqrt[3]{x}} \quad$ is not differentiable $x=0 \in(-8,8)$.
\therefore The M.V.T. is not applicable on $[-8,8]$.
3. $f(x)=x^{2 / 3} ; \quad[0,8]$

Sol.: 1. $f(x)=x^{2 / 3}=\sqrt[3]{x^{2}}$ is continuous on $[0,8]$.
2. $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 \sqrt[3]{x}} \quad$ is not differentiable $x=0 \notin(0,8)$

So it is differentiable on $(0,8)$
\therefore The M.V.T. is applicable on $[0,8]$.
To find c :

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

where $f(a)=f(0)=0^{2 / 3}=0$

$$
f(b)=f(8)=8^{2 / 3}=4
$$

and $\quad f^{\prime}(c)=\frac{2}{3 \sqrt[3]{c}}$, thus:

$$
\frac{2}{3 \sqrt[3]{c}}=\frac{4-0}{8-0} \Rightarrow \frac{2}{3 \sqrt[3]{c}}=\frac{1}{2} \Rightarrow \sqrt[3]{c}=\frac{4}{3} \Rightarrow c=\left(\frac{4}{3}\right)^{3}=\frac{64}{27}=2.3704
$$

Note: If $f^{\prime}(x)$ is continuous on $[a, b]$, the Max.-Min. Theorem for continuous functions tells us that f^{\wedge} has absolute maximum value $\left(\max f^{\prime}\right)$ and absolute minimum value $\left(\min f^{\wedge}\right)$ on the interval, the equation:

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

gives us the inequality:

$$
\min ^{\prime} \leq \frac{f(b)-f(a)}{b-a} \leq_{\max } f^{\prime}
$$

Example: Estimate $f(1)$ if $f^{\prime}(x)=\frac{1}{5-x^{2}}$ and $f(0)=2$.

Sol.: $a=0 \Rightarrow f(a)=f(0)=2$

$$
\begin{aligned}
& b=1 \Rightarrow f(b)=f(1)=? \\
& \begin{array}{c}
\min . f^{\prime} \leq \frac{f(b)-f(a)}{b-a} \leq_{\max } f^{\prime} \\
\frac{1}{5-0^{2}}
\end{array} \leq \frac{f(1)-2}{1-0} \leq \frac{1}{5-1^{2}} \\
& \frac{1}{5} \leq f(1)-2 \leq \frac{1}{4} \\
& 0.2+2 \leq f(1) \leq 0.25+2 \\
& 2.2 \leq f(1) \leq 2.25
\end{aligned}
$$

Corollary ${ }^{2}$: If $f(x)=0$ for all x in an interval (a, b), then $f(x)=C$, for all $x \in(a, b)$, where C is a constant.

Corollary ${ }^{3}$: If $f^{\prime}(x)=g^{`}(x)$ for all in an interval (a, b), then $f_{-} g$ is constant on (a, b); that is $f(x)=g(x)+C$, where C is a constant.

Homework:

1. Show the following equations have exactly one solution in the given interval:

$$
x^{2}+3 x+1=0 \quad-2 \leq x \leq-1
$$

2. Find the value or values of c that satisfy the M.V.T. for the following functions and intervals:
a. $f(x)=x^{2}+2 x-1$
$0 \leq x \leq 1$
b. $f(x)=\sqrt{x-1}$
$1 \leq x \leq 3$
c. $f(x)=x^{2 / 3}$
$0 \leq x \leq 1$
d. $f(x)=x+\frac{1}{x}$

$$
\frac{1}{2} \leq x \leq 2
$$

3. By applying Mean Value Theorem, Show that for any number a and b

$$
|\sin b-\sin a| \leq|b-a|
$$

4. By applying the inequality

$$
\min f \leq \frac{f(b)-f(a)}{b-a} \leq_{\max } f
$$

Estimate $f(0.1)$ when
a. $f^{\prime}(x)=\frac{1}{1+x^{4} \cos x}$ for $0 \leq x \leq 0.1$ and that $f(0)=1$.
b. $f^{\prime}(x)=\frac{1}{1-x^{4}}$ for $0 \leq x \leq 0.1$ and that $f(0)=2$.
5. Suppose that $f(0)=3$ and that $f^{`}(x)=0$ for all x. Use the Mean Value Theorem to show that $f(x)$ must be 3 for all x.
6. Suppose that $f^{`}(x)=2$ and that $f^{\prime}(0)=5$. Use the Mean Value Theorem to show that $f(x)=2 x+5$ at every value of x.

